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1. Introduction

There are two important problems in monitoring nuclear tests using seismic and other

means, either in a proliferation or treaty monitoring environment. The first is calibrating

an assumed relation between the yield of a nuclear test and a vector of observed magnitudes.

For example, we may measure body wave magnitudes, mb and L. for a number of nuclear

tests and seek to calibrate some function to the observed data which will allow prediction

of yield from the magnitude vector. The prediction of yield and its associated uncertainty

from observations on a future magnitude vector is the second important problem of interest

considered in this report.

To illustrate the nature of the first problem, consider a set of 16 explosions from

the Russian site at Semipalatinsk for which yields have been published in Bocharov et al

(1989) and Vergino (1989). The data, listed in Table 1 of Section 5, are plotted in Figure 1

where it is fairly clear that a linear model relating both magnitudes to the logarithm of the

announced yield would not be unreasonable. The only apparent deviation from linearity

is the second event where the mb value seems out of line. Fitting linear regressions of the

two magnitudes on log-yield seems to be a natural way of estimating a calibrati,,n relation.

Note that all of these events are from the same region and it is unlikely that monitoring

in a proliferation environment could yield such a large calibration set. Furthermore, the

slopes and intercepts may vary considerably depending on the location of the event and

the location of the network monitoring the event (see Heasler et al, 1990). One would more

likely have available a much smaller group of say 5 or 6 vector magnitudes with announced

yields as well as some prior information about the nature of the slopes and intercepts.

The prior values could based on geologic factors and (or) expert opinion. Given this more

limited situation, one could still calculate a classical linear regression of the magnitude

vector on yield that would make no use of prior knowledge. One could also ignore the

calibration data completely and just use some prior probability distribution for the slope

and intercept values based on an uncertainty derived from expert opinion. Alternatively,

there is a third Bayesian calibration approach that makes optimal us(, of b)oth the (ata

and prior information. We will investigate all three approaches in this report.

In the past, there have been close-in hydrodynamic measurements called CORRTEX

made on yield; these measurements are generally thought to be more accurate than seismic

magnitudes. One can either regard these measurements as highly accurate magnitude

surrogates with unit slope and zero intercept or as errors in variables measurements on

yield. We discuss a multivariate approach using CORRTEX as an additional measurement
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on yield in Section 4.3.

Yield estimation on the basis of the calibration relation derived above is the second

important problem we consider in this report. We assume that new yields corresponding to

vector magnitudes are fixed and unknown. Then, the predictive distribution (see Atchison

and Dunsmore, 1975) of the magnitudes in both the classical and Bayesian frameworks

will be functions of the univariate yield. Inverting the predictive magnitude distribution

then gives a confidence interval on the unknown future yield. An approach using the

classical (non-Bayesian) method of Fieller (1954) in the univariate case was used in Rivers

et al (1986) and in Picard and Bryson (1992). The extension of the classical method

to the multivariate case is due to Brown (1982). For the Bayesian case, we choose to

regard the yields as being fixed and unknown rather than as random with uniform prior

distributions as in Brown (1982) and Picard and Bryson (1992). The use of the predictive

distribution, without integrating over yields, gives a classical confidence interval rather

than the Bayesian interval which would be characterized by the conditional distribution of

yield given the magnitude vector in the usual Bayesian approach.

To summarize the approach taken here, we have integrated material from Shumway

and Der (1990) and Shumway (1990) with the emphasis changed from monitoring a possible

Threshold Test Ban Treaty (TTBT) to monitoring the possible worldwide proliferation

of nuclear weapons. A new section is included that covers estimating the yields when

CORRTEX measurements are available using maximum likelihood and a Bayesian set

of priors for the intercept slope vector. This allows yield estimation using only prior

information and no data. To accomplish this, we first introduce the simple linear model

relating elements of the magnitude vector to log yield. Included in this specification are

the slope and intercept uncertainty, formulated in one case using a bivariate normal prior.

and the magnitude uncertainty, formulated using the multivariate inverted Wishart (chi-

square) distribution. We then show how the slope and intercept can be calibrated using

classical (data only), Bayesian (prior only or prior combined with data) and CORRTEX

observations.

A second Bayesian approach is introduced that allows more generality in formulating

the prior information on slopes and intercepts but assumes that the covariance matrix

is fixed and known. For yield estimation, there is a predictive approach using both the

classical and Bayesian assumptions and a Bayesian approach using the empirical Bayes

estimators for the slopes and intercepts.
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2. Models for Magnitude Data and Prior Information

Figure 1 implies that a linear model relating log-yield to P-wave mb and Lg magnitudes

is reasonable, and evidence from other research (see Ringdal and Marshall, 1989) indicates

that other kinds of magnitude measures behave in a similar manner. Then, the linear model

relating the vector of p magnitudes from the ith event, mi = (rnji,..., mi)', i = 1..., N
to the yields wi, i = 1, .... N can be written in the form

m, = a + bio, + ej, (2.1)

where a is the pxl vector of unknown intercepts and b is the pxl vector of slopes. The

error vectors ej are assumed to be independent zero-mean multivariate iornial randoli

variables with common covariance matrix E.

It is convenient to collect the sample of observed vector magnitudes in the overall pxN

matrix Y = (Min , r. anN) and to collect the error vectors in a similar matrix, denoted

here by V = (e1 ,....eN). Then, defining the matrices

X=( 1 1 1 ) (2.2)
IO71 IV2 " "WN

and

B = (a, b) (2.3)

leads to writing (2.1) as the overall multivariate linear model

Y = BX + V, (2.4)

as is given for example, in Anderson (1986, Chapter 8).

If there are a limited number of data points, it may be important to bring in l)rior

information about the intercept and slope components of B and the error covariance matrix

E . Suppose, for example, that the uncertainty in the covariance matrix E can be expressed

in terms of the an inverted Wishart distribution (see Anderson, 1984, Section 7.7.1) with

parameters m and TI = mvi0 where EO is the prior covariance matrix corresponding to the

assumed prior value of E and m is the parameter expressing the initial uncertainty. The

value of m corresponds roughly to the degrees of freedom or equivalent sample size of the

prior information. That is, how large a sample would have been required to produce,for

example, the uncertainty of a panel-furnished distribution? The prior distribution of the

covariance matrix used is of the form
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7r(E) c JIE--(m+P+2)exp{-mtr E-'Fo} (2.5)

where o denotes proportional to and tr denotes the trace of a matrix.

In order to illustrate some of the considerations involved in specifying the joint prior

distributions described above, consider the case where we record only one magnitude (p=l)

and suppose that the distribution of the initial variance is inverted Wishart (chi-square)

with m=10 or m=40 and a 2 = .05.2 Figure 2 shows the probability densities of the

standard deviation a corresponding to the cases m-=10 and m=40. It is seen that the

choice m=10 corresponds to a wider uncertainty interval (roughly .03 to .12) whereas the

choice m=40 narrows the interval (to roughly .04-.07).

One must also specify the uncertainty of the intercept and slope components. The

slope and intercept components in B = (a, b) are assumed to be (conditional on E) nor-

mally distributed. The stacked vector consisting of the rows of B is assumed to be normally

distributed with mean components (ao, bo) and covariance matrix E 0 D-1 where • de-

notes the Kronecker or direct product. The 2x2 matrix Do is chosen to reflect the joint

uncertainty structure of a and b. It corresponds with the joint uncertainty structure of the

maximum likelihood estimator, B, given above in Equation (3.1) for which the comparable

stacked vector has covariance matrix E 0 C-'. For completeness, we give the prior density

of the slope-intercept matrix as

,r,(BE) (x JEJ-2qexp{--tr E-'(B - BO)Do(B - Bo)'} (2.6)
2

In Figure 3, we see the case corresponding to the intercept a and slope b having

expectations a0 = 4.4 and b0 = .9 and standard deviations .2 and .1. The correlation

was taken as -.5 so that the increase in slope must necessarily lead to a decrease in the

intercept. In this case, the initial slope uncertainty ranges roughly between .7 and 1.1 with

the inteccept ranging from 3.9 to 4.9. One would expect that expert input from p)anels

and studies would be used to establish the prior uncertainty regions for a, b and E. The

values chosen here are for illustrative purposes only.

In some cases, it may be useful to consider additional observations or judgements on

yield such as would be provided, for example, by CORRTEX monitoring, assumed to be

errors-in-variable surrogates for yields through Equation (2.1), i.e.

W, = w, + e,, (2.7)
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where the errors c, are assumed independent with differing but known variances ti2. Note

that assuming the variances were equal over calibrations would allow estimating them as

parameters via maximum likelihood. Consultations with scientific sources indicated that

this assumption would not be a reasonable one for measured hydrodynamic yields. It seems

natural to model the CORRTEX observation as above but the errors in variable structure

introduces a problem in the updating of the slope and intercept matrix. Because of the

empirical Bayes nature of the proposed estimators for slope and intercept, there is no term

in the equation for their variances that involves the error variance 0' of the errors in variable

measurement (see Shlunway, 1991). Therefore, we have taken, as an alternate approach, the

point of view that the CORRTEX yield is simply another observation on vector maglituide

with mean intercept a0 = 0 and mean slope b0 = 1 with small prior variances. Then, the

CORRTEX measurement fits naturally into (2.1) as another component of magnitude.

The incorporation of the CORRTEX yield into the basic model means that we must

introduce more flexibility into the priors than is available in those defined in Section 2. For

example, the priors there imply that the joint uncertainty in the slope and intercept vector

is proportional to the uncertainty in the error in the magnitude observation. It seeins

desirable to extend the possibilities so that we may have, for example, large uncertainties

on the CORRTEX error at the same time we have small uncertainties about the values

a = 0 and b = 1 for CORRTEX. What we give up with this formulation is the ability

to be uncertain about the error covariance matrix E which can't be easily integrated out.

Hence, we will assume that the covariance matrix of each error is known, i.e.

coV(e,) = Ei (2.8)

In the approach given here, we assume that the intercept and slope vectors a and b

have a different more general joint normal distribution in that the 2p x 1 stacked vector

3 = (a', b')' has a normal distribution with mean 030 = (as, bN)' and known 2p x 2p

covariance matrix

-a E.'ab

where the covariances of the components a and b appear in the p x p blocks. The form

for the prior density function is

7r2(03) cx exp{-1(/0 - 3f )'E1'(( - /3o)}. (2.9)
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The problems of interest for the model determined by (2.1) are again calibration and

yield estimation. By calibration is meant the estimation of the slope and intercept vectors

b and a and the covariance matrix E in (2.1) from a small data set consisting of paired

vector magnitudes and aunounced yields or yield surrogates. For yield estimation. we

seek the best estimator for log yields w for a collection of observed magnitudes. The next

section covers calibration.

3. Calibration

In this section, we discuss first in 3.1 the calibration of the regression relation (2.1)

using conventional multivariate regression. The classical approach has the advantage that

no assumptions are made about a, b and E except that they are fixed and unknown. The

disadvantage is that sample sizes are almost always small, leading to considerable uncer-

tainty in the estimated parameter values. In section 3.2 we consider a Bayesian version

of regression that allows incorporating prior assumptions about the slope, intercept and

yield-adjusted magnitude covariance matrix E. If input is allowed as to the probability

distributions for the parameters, uncertainties can be tightened up but there is the chance

that bad initial assumptions will contaminate results. The possibility of interpreting the

yields as errors in variables observations is considered in Section 4.3 under the prior in-

formation assumed in the Bayesian approach. In this case, we derive maximum likelihood

estimators for the unknown fixed yields in the calibration sample.



3.1 Classical Regression

Under the assumn)tiofn that the errors in (2.1) are indepe'l(ndent zero menan n(ormml

variables with p x 1) covariance matrix E, (see Anderson, 1984) the nmaximum likelihood

estimator for the slope-intercept matrix is

B = YX'C- (3.1)

where

C = XX' (3.2)

Noting the partitioned form in (2.2) and (2.3) enables writing (3.1) as

=-ui - uv)(min - ni) (3.3)

and

a = m - bIiu' (3.4)

where if, and fn are the mean log-yield and magnitudes respectively. In particular, (3.3)

and (3.4) show the analogy with the case where p = 1. They also emphasize that, the

results depend on a collection of single log-yield variables, uw, on the righthand sides. This

simplifies the usual multivariate arguments used to invert the predictive distribution for a

future unknown yield.

The covariance matrix E can be taken as known if sufficient information is available

as to the values of the magnitude variances an(l correlations. One may also coml)ute the

maximum likelihood estimator

S= (N - 2)-'(Y - f3X)(Y' - fX). (3.5)

Note that the above estimators will be well defined only when there are enough observations

N > p + 2 to make the resulting normal distributions non-singular.

•w nmm~ n~m l nua I uma imoumn uninnnnl~l~l l • ,7



3.2 Bayesian Regression

Now, given that the above prior information can be specified. it is natural that the

estimates fo: the slopes, intercepts and error covariance may change from those .zpecified

by the maximum likelihood estimators (3.1) and (3.5) respectively. To handle this, simply

take the joint density of YT, B and E and derive the joint conditional (on Y) marginal

densities of B and E. The conditional density of the data Y is the usual likelihood

L(YIB, E) cc•_- NCxp{--tr E-'(Y - BX)(Y - BX)'J. (3.6)

Taking the posterior means of the density

P(B, EIY) cx L(YIB, E)ir(BIZ)ir(E)

leads to Bayesian estimators proportional to

BN =(BC + BoDo)(C + Do)-' (3.7)

where C is defined in (3.2), BN (aN,,bN) and

N = (m+N+1 -P)-`(rnzo+(N-2)t+(B-Bo)(C-' + Do1)-(B- Bo)I. (3.8)

The subscript N differentiates the Bayes estimators from the maximum likelihood estima-

tors b and serves as a reminder that the Bayes estimators are based on a sample of size

N. These estimators are seen to combine the prior panel information and the data to form

a combined estimator for the intercepts, slopes and error covariance matrices.

Using the alternate prior discussed at the end of Section 2 with the prior covariance

on the intercept slope vector f3 (=ab')' given as Eh3, it is convenient to write the model

(2.1) in the form

m,= X2iI + e, (3.9)

where

x= (I,, ,,) (3.10)

is the p x 2p partitioned matrix and Ip 4denotes a p x p identity matrix. Un(der the assunip-

tions given above, it is simple to show that for Y = (mn,. .IN), the Bayesian estimator

for the slope and intercept vector, say '3 N = E(131Y) is

8



N

3N = EN (ZA -h m, + r'-3) (3.11,

where

N -

-N = ±y) - (3.12)

is the conditional covariance matrix.

It is clear that there are two routes that one may take towards estimating the slope

from an uncalibrated test site. The first is to insist on fully weighting the available obser-

vations and use the ordinary multivariate regression estimators given in (3.1) and (3.5) or

(3.11) when the covariance matrices of the errors are known. If a reasonable number of

calibration events are furnished and if one believes the yields for these events, it is possible

that the slope and intercept estimators will be reasonably good; the variances of the esti-

mators can be read from the estimated covariance matrix t 0 C'. However, there may be

compelling reasons for incorporating prior information into the estimation procedure. The

first is that there may be considerable geophysical information and expert opinion that can

be used to narrow down the possible values for the slope, intercept and error variance. The

second reason is that the observed data may have been deliberately modified to contribute

to a distorted magnitude-yield picture. The Bayesian solution has the advantage of being

able to weight optimally the two components of information contributed by the expert

opinion (prior distribution) and the data.

9



3.3 Empirical Bayes With CORRTEX

We now consider deriving maximum likelihood estimators for the yields w,1 ..... .,

under the model given at the ends of section 2 and section 3.3 where the covariance matrix

of the errors is assumed known. Consider the joint likelihood of the N magnitudes and

hydrodynamic CORRTEX yields, where we assume that the last element of the vector

mi contains the CORRTEX yield W,, defined as an observation satisfying (2.7). The

likelihood is written as

N N

Sp(mli; wi) i P(mi 1/3, i)7r 2 (!3) dOj (3.13)

where p(mi/3,0ui) denotes the density (conditional on 3) of the ith magnitude and ir2 (03)

denotes the prior given by (2.9). We assume for convenience that all Ej are known. It

is clear from (2.9) and (3.9) that MI,.., MN are jointly nornmal with mnean X,/IJ and

covariance matrix determined by

cotm, XiinX) + Ei, if i=j
XiE'X3, if i € j.

The joint likelihood (3.13) is seen from the form of Xi in (3.10) to be a highly nonlinear

and intractable function of the unknown log yields wl,..., WN and we consider maximizing

it by indirect means.

The EM algorithm, see Dempster, Laird and Rubin (1977) offers a considerable sim-

plification to the usual nonlinear optimization approaches. If we were to observe the vector

/3, the complete-data log-likelihood for this problem would be of the form

logL' ox -log I EI - 1(0 -/3o)'E-(0 - 13)

N N N

2 E log 7I- E(m ,- Xo)'-r(m, - X,3) (3.14)
i=1 i=l

In order to maximize (3.13), the EM algorithm defines an iterative sequence consisting of

maximizing successively E(logL'IY). For this to work, we need expressions for E(311')

and covf/JIY] which are available through Equations (3.11) and (3.12). Then. define 3 \, =

(a' , bv)' and the partitioned conditional covariance matrix

10



EN( = Na aNb

where the covariances of the components aN and bN, derived from (3.12), appear in the

p x p blocks. To obtain the terms in the expanded form of E(log L'IY), write

E(b'E 1 bIY) = tr{N7'E(bb'IY)}

= tr{ITl(bNbN + ENb)}
=- b''-bN +tr{ N1

and

E[b'E-'(mi - a)IY] = b'EN- 1 mi - tr{ -'VN~b}

Substituting the above into the complete-data log likelihood yields the estimator

-b7/=(mNi - aN) - tr{Ei-lENab} (3.15)
Ni + tr{flYNbI

where

62Ni W N.•

,bN,,EbN. (3.16)

The above equations suggest the following iterative procedure for computing the max-

imum likelihood estimators.

1. Set the initial yield estimates at the CORRTEX estimates Wi, i = 1 ... , N

2. Evaluate O3 N and EN using Equations (3.11), (3.12) and the current estimated log-

yields.

3. Adjust the log-yields using Equations (3.15)-(3.16).

3. Return to Step 2. until convergence.

It is clear that the approach of this section generates empirical Bayes estimators for

the slope-intercept vector /1 since the conditional expectations are evaluated at estimated

yields. These empirical Bayes estimators are functions of the maximum likelihood yield

estimators and will have variances that increase as the variances of the maximum likelihood

estimators. The problem with the maximum likelihood estimators is that there are as many

11



unknown yields as there are vector observations so that an asymptotic result will not be

available.

This completes the specification of the method for estimating the slope and inter-

cept vectors along with the error covariance matrix using classical and Bayes regression

procedures. In the next section, we consider the problems involved in estimating a future

unknown yield using the new magnitude vector and the calibrated regressions derived here.

4. Yield Estimation and Uncertainties

We concentrate now on the problem of inferring the yield when the new magnitude

vector m is given as

in = a + bu, + e

That is, we are interested in solving the above for the yield 10" given an observation oil a

new magnitude. Of course, it is quite obvious that given a fixed known a and b and the

covariance matrix E, the maximum likelihood estimator for the log-yield

b'E-1 (m- a)
b-lb (4.1)

is called for because it is unbiased and has variance

21
2 ý = bE lb' (4.2)

For example, in the most trivial case, with independent magnitudes. one obtains the

weighted estimator

S= cl(ml - a,) + c 2(0n2 - a 2 )

where

b?

Ci b2  b2 ,

often referred to as the unified yield estimator.

12



Furthermore. iii the general case given above, there is a 95% confidence interval of

the form &' ± 1.96a,,.. Since w denotes log-yield, say log y, the limits expressed in terms of

yield y are (U-', U) where

U = 10l90'9t i, (4.3)

is the so-called uncertainty factor. It is convenient because the lower and upper limits for

yield are obtained by dividing or multiplying the estimated yield by the uncertainty factor.

The difficulties associated with using the simple inverted unified estimator above when

a and b are estimated from calibration data have been discussed at length in the statistical

literature (for example, see Brown, 1982, Hoadley, 1970, Oman, 1988, Picard and Bryson,

1989) and we will only say that even under joint normality of i and 6, the problem is

intractable for the direct estimator given in (4.1). An approach that focuses on the use

of the predictive distribution of m to derive confidence intervals in the classical case and

prediction intervals in the Bayesian case has been given by Brown (1982). We use Brown's

method when a calibration set is available and no prior information can be assumed for the

slope-intercept and covariance parameters. This corresponds to the calibration information

available from the regression approach described in Section 3.1. This method, which is

essentially a generalization of that given by Fieller (1954) is reviewed in Section 4.1.

Prior information from expert panels or other sources can be used to incorporate dis-

tributional assumptions about the uncertainty of the slope-intercept matrix B and the

covariance matrix E as in Section 3.2. Brown (1982) describes a fully Bayesian approach

that sets a prior distribution on the log-yield w as well and then computes probability

intervals from the posterior distribution of w. For example. Picard and Bryson (1992)

follow this approach with a uniform distribution assumed a-priori for log-yield. The pos-

terior distribution of log-yield must then be colliputed by numerical integration methods.

An alternate approach, that retains the Bayesian flavor, is to retain the assumption that

yields are fixed unknown constants and to carry through the process of inverting the pre-

dictive distribution of magnitude as in the classical Fieller methodology. The intervals

obtained then have the same interpretation as do the classical ones. This approach, which

is essentially new, is given in Section 4.2.

Finally. in the approach incorporating CORRTEX measurements given in Section 3.3.

we obtain maximum likelihood estimators for the slope-intercept matrix B which can be

used as inputs to estimate yield using a modified version of Equation (4.1). We discuss

this approach in Section 4.3.
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4.1 Classical Prediction Intervals

We develop a classical interval for a new observation by noting that under the as-

sumptions of Section 3.1, with m a new magnitude vector and the new unknown yield w.

the distribution of the residual

m - h- b

is multivariate normal with mean 0 and covariance matrix (1 + q(,v))E) where

q(w) = (c11 + 2c 12w + c22 w2) (4.4)

with c'3 denoting the j th element of C-i. It is also the case that the residual is independent

of (N - 2)t, which has the Wishart distribution with N-2 degrees of freedom. Then, the

quadratic form in the residuals with the inverse of the covariance matrix (1 + q(1w ))t in

the middle has Hotellings T2 distribution as in Anderson (1984, p. 163) or Brown (1982).

Hence, the resulting inequality

(m-f - bw)'E-,(m - ii - bw) < Kp N(Ca) (4.5)
(1 + q(w)) -45

involving the quadratic form in the residuals can be inverted to obtain a 100(1 - a)(,(

confidence interval. The constant is

p(N - 2)KpN(O) =-- (N-• p• - )FpN~Pi(a') (4.6)

with Fp,N-p-i(a) denoting the (1-a) critical point on the F distribution with p numerator

and N-p-1 denominator degrees of freedom. We obtain the (1 - a) level confidence interval
as'

d
+L (4.7)

c
where

L =- (4.8)
(.

(dhfineks the upper and lower limit with

c = b61-I6 - C12 K,N(a), (4.9)
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(= b -b Kp.N(o (4.9)

d - - i) + c' 2 Kp.N(0) (4.10)

and

= (m - ki)' -'(m - A) -(1 + c11 )Kp,N(c) (4.11)

The confidence intervals, derived by Brown (1982), are the exact analogues of the

univariate intervals first given by Fieller (1954). As in the univariate case, the intervals

may be open, but this only occurs when the slope vectors are not significantly different from

zero at level a. Oman (1988) has proposed axi alternative proce(lure lbased on geometric

arguments when there is a strong chance that the intervals above might be degenerate.

It should be noted that the interval in (4.7) is for log-yield: the interval on yield would

be obtained by inverting the limits given by (4.7). By analogy with (4.3), we define the

uncertainty numler

F = 10L. (4.12)

Strictly speaking, this requires using d/c as the estimator for log-yield but we will custom-

arily use the slight modification of this implied by Equation (4.1) which does not depend

on the a level chosen for the confidence.

4.2 Predictive Bayes Methods

We may also look at deriving posterior predictive intervals under the assumption that

only prior information is available in the form of the joint normal inverted Wishart priors

on B and E in Section 2. Now, denoting the prior inverted Wishart (listribution on E as

7r(r) and the condlit ional de'ltsity of the intercept and slope iiatrix B by 7r(B IV) as blfOr,,

we may write the posterior predictive density of m as

P(m) = Jp(mIB, E)7r(BJE)7r(E) dB dE (4.13)

where we integrate first over B and then over E. The result leads to a multivariate t

distribution for m (see, for example, Anderson, 1984, p. 283). This implies that the

quadratic form in the multivariate t density (involving the residuals (m - a0 - bow) and

the inverse of a particular covariance matrix) has the F distribution. The resulting interval

is exactly in the form of (4.8) with

c = b'E'bo - do22 Kp,m(O), (4.14)
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d = b'i,-'(m - ao) + d• 2 •Kp,m(Ok) (4.15)

and

e=(m- ao)'E-r'(m- ao) - (1 + d1 )Kp,m(a), (4.16)

where do" is the ijth element of Do 1,

E= (m- p1) (4.17)

and

Kpm(o) = pFp, 1 -. +,((k) (4.18)

The uncertainty number is computed as before using (4.12) with the modified definitions

of the constants c, d and e.

Finally, we look at the case where both data and prior information are available. This

means that we introduce the joint likelihood of the calibration data Y in the equation for

the posterior predictive density. This leads to

P(mIY) = J p(mlB, E)L(YIB, E)7 (Blr)7-() dB dE (4.19)

where L(YIB, E) denotes the likelihood as the usual conditional density of the data given

the parameters. Performing the above integration leads to the posterior t-distribution as

before and the interval (4.8) obtains again with the values
c = b�c�'bN - d 2 2p,m,N(6), (4.20)

d = 6'(-1b N (m - aN) + d12Kp,m, N(a) (4.21)

and
c = ((m - aNY),E(m - (1 + d" )Kp., ,, ,.(o ). (4.22)

where BN = (aN,bN) so that aN and bN can be picked out of the Bayesian regression

matrix computed in Equation (3.9) in Section 3.2 and EN is defined in (3.10). In these

expressions d• denotes the ijlh element of D-' where

DN = C + Do (4.23)

and the constant is

Kp,mN(a) = pFp.m+N+l -p(a). (4.24)
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4.3 Predictive Yield Estimation With CORRTEX

In Section 3.3, we derived maximum likelihood estimators for the yields in a calibration
sample using CORRTEX yields as the last magnitude observation. This gave empirical

Bayes estimators for the slope-intercept vector ON and its covariance matrix EN as in

Equations (3.11) and (3.12) where we evaluate those equations at the estimated log-yields

in the calibration sample. Suppose we denote these empirical Bayes estimators by ;ýN Mid

,C_ N respectively. lXe want to be able to develop an estimator of a single new yield, given

an observation vector of magnitudes and a CORRTEX yield of the form

m = a + bu' + e (4.25)

where e is assumed to have covariance matrix E that is known.

The posterior predictive distribution under the current model that uses the prior

density 7r2(;3) is difficult to invert in order to derive a confidence interval for the yield

measurement as was done in Section 4.2 under the prior density 7r(BJE). However, it
would be natural to use an estimator like (4.1) in this case and we consider using (4.1)

evaluated at the Bayes estimators aN, bN, leading to

tb' = E-I(m -aN)
N b' 7,EbN (4.26)

b~N
We can show that. conditional on the calibration data Y, E(iiIY) = w and that

E((i, - w) 2 1Y1 _ q(w)
6•

where

= b E-1bN (4.27)

and q(u,) is a quadratic form in u,. The posterior distribution is normal and we can solve

the quadratic equation

q(u,) -

for w, where z denotes the upper 100(1 - 2) percentile on the standard normal dis-

tribution. We will use o = .025 in agreement with the standard used in previous yield

calculations.
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The above algebra leads to a posterior confidence interval of the form (4.7) where

c I=K1b-, -bN'E NbEbN (4.28)

d =t- Kb E- (4.29)

and

'b2 - K2(62 + b'r-1NaV E- 1 bN), (4.30)

with

K = Zf_ (4.31)

The uncertainty factors are computed as before, using Equation (4.12).

The practical application of this approach would use an initial set of CORRTEX yields

to derive yield estimators using the maximum likelihood procedure of Section 3.3. This

also yields the empirical Bayes estimators fN and bN for the intercept and slope vec-

tors along with the estimated covariance matrix tN. Then, new yields can be estimated

using Equation (4.26) with only seismic values or with combined new seismic and COR-

RTEX measurements. If only seismic values are available, simply use the submatrices and

subvectors without the CORRTEX parts for the estimation procedure.
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5. Calibration and Estimation: An Example

In order to give a simple example illustrating the computations involved in the various

techniques developed here, we consider a set of 16 Semipalatinsk events for" which yields

were published in Bochalov et al (1989) and Vergino (1989). For this set of 16 events,

we obtained the network averaged body wave magnitudes rnb, corrected for receiver ternis

as well as the near-source focusing and defocusing effects from Jih and Shumway (1991).

The second component that may be useful is root mean squared error computed from L.
magnitudes at a network of Soviet stations at regional distances (1000-4000 kin) as given

by Israelsson (1991). The 16 events, along with dates are shown in Table 1 below.

Table 1: Magnitudes and Announced Yields From 16 Explosions

Event No. Date mnb L9  Announced Yield

1 03/20/66 5.853 6.048 100

2 05/07/66 4.456 4.889 4

3 09/29/68 5.641 5.801 60

4 07/23/69 5.186 5.427 16

5 11/30/69 5.945 6.024 125

6 12/28/69 5.660 5.707 46

7 04/25/71 5.826 5.946 90

8 06/06/71 5.319 5.369 16

9 10/09/71 5.136 5.192 12

10 10/21/71 5.341 5.479 23

11 02/10/72 5.289 5.369 16

12 03/28/72 4.984 4.982 6

13 08/16/72 4.921 4.948 8

14 09/02/72 4.602 4.659 2

15 11/02/72 6.160 6.158 165

16 12/06/72 5.983 6.111 140

The magnitudes are plotted against the log-yields, w in Figure 1 and we note the
excellent agreement with the linear model (2.1). The exception is the 7nb value for tile

second event which seems low compared to the L 9 and the other points. The sample

computations here will assmne that the magnitude vector and yield values are available

for the first six events (above the line in the table) and these six events form the calibration
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set. The symbols for the six events are shaded in Figure 1 and we see that they cover a

reasonable range of yields.

We assume also that prior information in the form of expert opinion puts the intercepts

of the two lines at 4.4 and the slopes at .9. The uncertainties are defined as in Section

2 by assigning standard deviations of .2 to the intercept vectors, .1 to the slope vectors

and a correlation of -. 5 between the intercept and slope. We always assume that the rnb

and Lg yield adjusted magnitudes have standard deviations .05 and .03 respectively with

correlation .3. This matrix becomes To in the Bayesian approach defined by the first set of

priors given in (2.5) and (2.6). In this formulation, the announced yields play the part of the

known wi needed for the approach leading to (3.7) and (3.8). Figure 1 shows the regression

line at the expected values and it is clear that it lies above the line that might be implied

by the data. Inferring yields from this line will lead to severe underestimates. Figure 2

shows the uncertainty region for the intercept and slope;the intercept is between 3.9 and

4.9 approximately 95% of the time with the comparable assumptions on slope involving

the interval .65 to 1.15. The assumed correlation (slope increases as the intercept gets

smaller) of -. 5 restricts this variation somewhat.

In the case where we wish to incorporate CORRTEX values, it seems reasonable to

regard the observation on CORRTEX yield as another element in the magnitude vector

with a0 = 0 and b0 = 1. Then, the prior distribution given by (2.9) has three components

and we may assigned the prior standard deviations of intercept and slope for the COR-

RTEX magnitude to be a small number (.03 in the present example) with no correlation

between the intercept and slope. The matrix E0 in (2.9) is a 6 x 6 matrix.

Table 2 below shows the estimated intercepts and slopes for various methods. The

first two lines are the result of simple multivariate regressions not involving the use of

prior information. This is the methodology of Section 3.1 and we see that the calibration

regression on the first six events differs somewhat from the regression oin all 16 events. In

particular, the low Mib value pulls the intercept down to 3.92 and increases the slope to

.98. The regression on the full set of 16 events gives a more representative line. This shows

how far wrong one can go when there is a presumed outlier and we depend on the small

calibration sample.
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Table 2: Estimated Slopes and Inter epts for Semipalatinsk

Intercepts Slopes

Mb L9 Mb L 9

Data (16 events) 4.22 4.34 .83 .83

Data (6 events) 3.92 4.45 .98 .77

Bayes Prior 4.40 4.40 .90 .90

Bayes-Data (6 events) 3.97 4.43 .96 .78

Bayes-CORRTEX (6 events) 3.9'1 4.45 .96 .78

The pure Bayes approach calibrates with the assumed prior distribution and these

prior assumptions are reproduced in row 3 of Table 2. Combining the prior assumptions

with the first 6 calibration events again pulls the nib intercept down mid the slope up but

the Lg slope and intercept are quite close to what obtains for the entire 16 points. All

three methods give nearly the same answer when applied to the calibration set.

For the CORRTEX based estimator, we use the empirical Bayes estimators from

Equation (3.11), with yields evaluated by the maximum likelihood procedure of Section

3.3. The uncertainties are evaluated using Equation (3.12) and lead to the estimated stan-

(lard deviations .06, .04, .009, .04, .02, .009 for (a,, a 2 , a 3 , bh, b2 , b3 ) with correlations -. 95

between a,, b, and a 2 , b2 and .27 between a,, a2 and between bl, b2 . The pairs a,, b2 and

a 2 , b, were negatively correlated (-.26) and all other posterior correlations were zero.

The result of applying the methodology of Section 3 to get yield estimators for Events

7-16 are shown in Table 3. One can compare the estimated yields with the announced

yields to estimate how well each method works. The data-driven estimator is discussed in

Section 4.1. The estimator is (4.1) evaluated at &, b and the endpoints of the confidence

interval determine the uncertainty number using (4.8)-(4.12). The pure Bayes estimator

involves only prior information and the interval defined by (4.14)- (4.18) with the estimator

computed by evaluating (4.1) at a0 , b0 . Combining data and the prior information gives

the Bayes-data estimator by evaluating (4.1) at bN, aN and using the confidence intervals

defined in (4.20)-(4.24).
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Table 3: Yield Estimation Results for Semipalatinsk

(6 calibration events)

Event Yield Data Driven Pure Bayes Bayes-Data CORRTEX

7 90 90"(2.01) 53(2.39) 87(1.61) 86(1.36)

8 16 18(1.85) 12(2.28) 17(1.60) 17(1.30)

9 12 11(1.86) 7(2.28) 10(1.63) 11(1.28)

10 23 23(1.94) 15(2.24) 23(1.59) 23(1.31)

11 16 18(1.89) 12(2.27) 17(1.60) 17(1.30)

12 6 6(1.75) 4(2.33) 6(1.68) 6(1.26)

13 8 5(1.82) 4(2.33) 5(1.69) 6(1.26)

14 2 2(1.73) 1(2.48) 2(1.83) 2(1.22)

15 165 185(2.12) 98(2.56) 170(1.66) 165(1.39)

16 140 145(2.07) 81(2.47) 140(1.65) 135(1.38)

* Uncertainty factors shown in ( )

The results make it clear that the pure Bayes apor,.,',-.i goes wrong because of the

choice of a slightly erroneous prior; all yield. -,r, dnderestimated although the uncertainty

number is large enough to put all of the announced yields in the predicted uncertainty

region. The data-driven regression estimator . reasonably well except for overestimat-

ing the two highest yields; again the uncertainty intervals include the true values. Both

the Bayes-data and CORRTEX methods do quite well. The Bayes-CORRTEX estimator

should do well since there is an extra observation in the vector. For the particular example

given here, the Baycs-CORRTEX method assigned weighting coefficients .21, .60,.33 to

rob, Lg and the CORRTEX yield respectively.
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6. Discussion

There are many plausible approaches to calibration and estimation in the multivariate case.

One must not only be prepared to work with calibration data when it is available but must

be willing to develop a yield estimator when no calibration data is provided. It is the second

of these two situations that may pertain more often in the current testing environment

where monitoring worldwide proliferation is of primary interest. In such an environment,

the use of prior information provided by expert panels and by seismic studies of different

regions of the earth becomes paramount. The emphasis shifts from an approach that is

heavily weighted towards calibration from samples, possibly involving CORRTEX yields,

to one that is oriented towards formulating more accurate prior distributions. Because of

the eniphasis up to this point on the monitoring of a threshold test ban treat (TTBT), the

research summarized in this report concentrates on the sampled data approach.

However, it should be pointed out that the predictive Bayes method discussed at the

beginning of Section 4.2 is an example of an approach that uses only prior information and

needs no calibration sample. The specification of the prior information involves expressing

the joint uncertainty in the slope-intercept vectors in terms of a multivariate normal distri-

bution. The mean value of this multivariate normal (au, b 0 ) contains the expected slopes

and intercepts whereas the uncertainty is specified through a covariance matrix. Geomet-

rically this involves being able to intuitively choose elliptical uncertainty contours of the

form given in Figure 3 that express our prior information about the slope and intercept.

The slope-intercept prior is proportionai to the yield- adjusted magnitude covarianice

matrix which may also be subject to some uncertainty. This is expressed through the

inverted Wishart distribution with a specified prior covariance matrix given by E_. The

marginal distributions behave like inverted chi- squared distributions with the uncertainty

specified by the degree of freedom parameter in. Although the densities are restricted in

some sense, they tend to emulate what one might regard as reasonable prior specifications

for uncertainty about the parameter E.

If the above prior densities are not flexible enough, the approach involving the second

set of priors given by Equation (2.9) can be applied. This does impose the restriction

that we must be willing to fix the yield adjusted magnitude covarizace matrix at some

known value. This set of priors seems to be the only realistic way that one can incorporate

the errors in variable observation on CORRTEX into the magnitude vector. The posterior

variances of the slope-intercept vector will be weighted properly by the CORRTEX variance

in this particular configuration.
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Unfortunately, any Bayes approach involves the risk of using an incorrect prior so that

the estimated posterior yield might be quite far off. However the uncertainty factors will

increase in proportion to the variance covariance structures of the slope-intercept vectors

and the yield-adjusted magnitude vector. Therefore, the overall statements including the

uncertainty factor will include the true yield 95% of the time if the uncertainty of the prior

intercepts and slopes in assigned in a realistic fashion. This was seen in the example shown

in Table 3.
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Figure 2: Prior Probability Distributions for Standard Deviation for ao = .05 (n=10 and

40 degrees of freedom).

26



Int. Slope Prior(2,1,-5
123.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

1.21 1 1.2

(80 0.65 9

1.0 0 .1.0

0.9 0" 01 . Slope
o0 0 0.0

0.8 CP 0.8

0.7 Q_08-0.7

063.8 3. 19 4. 10 4. 11 4. 12 4. 13 4. 14 4. 15 4. 16 4. 17 4. 18 4. 19 5.0 .r

Intercept

Figure 3: Prior Distribution of Intercept and Slope with a0  4.4, bo .9, a. .2, ab

-1, Pab =-.5. Contours are cumulative probability that the intercept-slope pair

is contained within the region.
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